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ABSTRACT

SIMD extensions are widely adopted in multi-core processors to
exploit data-level parallelism. However, when co-running work-
loads on different cores, compute-intensive workloads cannot take
advantage of the underutilized SIMD lanes allocated to memory-
intensive workloads, reducing the overall performance. This paper
proposes Occamy, a SIMD co-processor that can be shared by mul-
tiple CPU cores, so that their co-running workloads can spatially
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share its SIMD lanes. The key idea is to enable elastic spatial shar-
ing by dynamically partitioning all the SIMD lanes across different
workloads based on their phase behaviors, so that each workload
may execute in variable-length SIMD mode. We also introduce an
Occamy compiler to support such variable-length vectorization by
analyzing such phase behaviors and generating the vectorized code
that works with varying vector lengths. We demonstrate that Oc-
camy can improve SIMD utilization, and consequently, performance
over three representative SIMD architectures, with negligible chip
area cost.
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1 INTRODUCTION

SIMD extensions are widely adopted in mainstream multi-core pro-
cessor to exploit data-level parallelism (DLP) [31, 45, 46]. However,
when co-running workloads on different cores, some workloads
(e.g., compute-intensive ones) cannot take advantage of the under-
utilized SIMD lanes that are allocated to some other workloads (e.g.,
memory-intensive ones), resulting underutilized SIMD resources
and reduced overall performance.

This paper focuses on exploiting DLP for workloads (with dif-
ferent operational intensities) co-running on multi-core CPUs. For
CPU cores with their own private SIMD lanes (Figure 1(a)), there
are two factors causing underutilized SIMD resources. First, a work-
load runs on a core with a fixed number of SIMD lanes even though
it actually requires varying vector lengths in its different phases
[2, 14, 30, 33]. Second, the SIMD lanes in each core may be under-
utilized formemory-intensive workloads even they exhibit sufficient
DLP, since the underlying SIMD pipelines may stall frequently to
wait for expensive memory access instructions to be completed.

To improve SIMD utilization, two representative approaches for
sharing the SIMD lanes by different cores exist:

• Temporal-Sharing. Adopted in Apple Matrix co-processor
[17–19] and others [3, 4, 29], temporal sharing is introduced
to improve SIMD utilization by allowing a core to use all the
SIMD lanes of a SIMD co-processor (Figure 1(b)). However,
all the cores will compete for other hardware resources, e.g.,
vector register file (VRF), leading to reduced SIMD instruc-
tion issue rates for the co-running workloads. As a result,
the SIMD resources can still be underutilized.

• Static Spatial-Sharing. As proposed in [3, 4, 29], one can
statically partition all the SIMD lanes available and assign
different partitions to different workloads co-running on
different cores (Figure 1(c)). However, a partitioning decision,
once determined, is fixed at runtime.

In this paper, we improve spatial sharing significantly by making
it achievable dynamically or elastically for the first time (to the
best of our knowledge), as illustrated in Figure 1(d). We propose
Occamy, an ARM SVE SIMD co-processor, to support this elastic
spatial sharing policy for a multi-core processor. The key insight is a
hardware and software co-designed elastic MIMD-SIMD (EM-SIMD)
execution model, which enables partitioning dynamically the SIMD
lanes among a set of co-running workloads so that each workload
can run in variable-length SIMD mode, by introducing a resource
table to dynamically control the number of SIMD lanes allocated
to each core. On the hardware side, Occamy designs SIMD lanes
as a set of fully homogeneous functional execution units, so that a
SIMD data path can be flexibly assembled from a subset of these
execution units. Meanwhile, an embedded lane manager serves to
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Figure 1: Comparing three existing SIMD architectures with

our approach (where IQ stands for Issue Queue).

partition the SIMD lanes for the co-running workloads by making
use of the resource table. On the software side, Occamy includes
a compiler to support such variable-length vectorization, which
analyzes the phase-changing points and the phase behaviors in a
workload, performs elastic vectorization, and finally, generates the
assembly code that can elastically switch to the number of SIMD
lanes needed during program execution.

The paper makes the following major contributions:

• A Hardware and Software Co-Designed EM-SIMD Exe-

cution Model.We present an EM-SIMD execution model,
which enables partitioning a set of SIMD lanes into multiple
variable-length lanes across the CPU cores by maintaining a
lane partition plan in an on-chip resource table. Our execu-
tion model provides a set of ISA extensions, based on which
a workload can first find the number of allocated lanes and
then execute the variable-length SIMD instructions.

• A SIMD Co-Processor for Supporting Elastic Spatial-

Sharing.We have designed an on-chip SIMD co-processor
shared by multiple CPU cores, with its SIMD lanes being
flexibly partitionable among all the cores during program
execution. This is achieved by instructing a set of its ho-
mogeneous function units to be assembled into SIMD data
paths with various widths appropriately, by the software
according to the proposed EM-SIMD ISA.

• A Hardware Lane Partitioning Manager. We have de-
signed a hardware lane manager for performing lane parti-
tioning for a set of co-running workloads, guided by a vector-
length-aware roofline model for estimating the performance
of a workload for a given number of SIMD lanes.

• Compiler Support. We have developed a compiler for sup-
porting elastic spatial-sharing by generating code that can
switch to a new vector length needed at runtime.

• Evaluation. We have evaluated Occamy by running 34
workloads extracted from 28 SPECCPU2017 loops and 14
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OpenCV kernels on a simulated two-core processor. In the
case of a pair of memory- and compute-intensive workloads,
we assign the former to Core0 and the latter to Core1. Oc-
camy (Figure 1(d)) improves SIMD utilization by 1.29−1.45×,
and consequently, boosts performance by 1.11 − 1.39× on
Core1 while maintaining the same performance on Core0,
on average, over three existing SIMD architectures (Fig-
ure 1(a)-(c)) with negligible chip area cost.

2 MOTIVATION

We use a two-workload example to motivate why Occamy can
achieve the best SIMD utilization and performance among the four
two-core SIMD architectures depicted in Figure 1.

Figure 2(a) gives an example of two co-runningworkloads, where
WL#0 includes twomemory-intensive loops from SPECCPU2017/654.
rom_s with different operational intensities and WL#1 includes one
computation-intensive loop from SPECCPU2017/621.wrf_s. Let there
be a total of 32 SIMD lanes for both cores with each lane processing
32-bit floating-point data. We simulate all the four SIMD architec-
tures in Figure 1 on a gem5 cycle-level simulated two-core ARM
processor, with their configurations described in Section 7, by us-
ing the same amount of SIMD resources for fair comparison, e.g.,
with the vector length set as 32 lanes for each architecture. We
run WL#0 on Core0 and WL#1 on Core1. For WL#0, there are two
phase-changing points, with the first indicating an increase in the
operation intensity (implying that WL#0 can benefit frommore lanes)
and the second indicating that WL#0 is finished (implying that WL#1
can now use all the lanes). Thus, there are three phases, p1, p2 and
p3, in between these two phase-changing points when co-running
WL#0 and WL#1.

Occamy can complete WL#0 in nearly the same amount of time
as the other three SIMD architectures but WL#1 more efficiently,
delivering the best overall performance. Figures 2(b)-(d) illustrate
their execution on the three architectures (Figures 1(a)-(c)) and
Figure 2(e) illustrates our approach (Figures 1(d)). In Figure 2(b),
32 SIMD lanes are equally divided and used privately by its two
cores. Thus, WL#1 cannot have its DLP sufficiently exploited since
it cannot use the 16 lanes allocated to but under-utilized by WL#0.
The entire execution takes 36606 cycles. In Figure 2(c), temporal-
sharing enables WL#1 to fully utilize all the 32 lanes after WL#0 is
done, shortening the overall execution time to 25937 cycles. In
Figure 2(d), static spatial-sharing allocates 12 lanes to WL#0 and 20
lanes to WL#1. As a result, WL#1 can now enjoy more lanes than in
Figure 2(b) but still cannot fully use all the 32 lanes, resulting in an
overall execution time siting in between the first two cases: 29293
cycles. Figure 2(e) illustrates our elastic spatial sharing approach,
by which we can dynamically adjust lane partitioning at the two
phase-changing points to execute p1, p2 and p3, obtaining the
fastest execution in 22666 cycles.

Figures 2(b)-(e) plot the SIMD utilization for the four SIMD ar-
chitectures in Figure 1. In the x-axis, each point represents a set
of 1000 consecutive cycles executed. In the y-axis, “#Lanes/Cycle
(Avg)" represents the average number of SIMD lanes used in each
core over the total allocated to the core. Figure 2(f) lists their perfor-
mance statistics. For each SIMD architecture, the speedup obtained
is given with the core-private SIMD lanes in Figure 1(a) as the

baseline. For the SIMD issue rate and SIMD utilization metrics, the
former represents the number of SIMD compute instructions issued
in each core per cycle while the latter represents the fraction of
busy lanes for a period of time (in terms of cycles) considered:

𝑆𝐼𝑀𝐷_𝑢𝑡𝑖𝑙 =
∑𝐶

𝑐=1 #𝑏𝑢𝑠𝑦_𝑙𝑎𝑛𝑒𝑠 (𝑐 )
#𝑡𝑜𝑡𝑎𝑙_𝑙𝑎𝑛𝑒𝑠×𝐶

where 𝐶 represents the total number of cycles, #𝑏𝑢𝑠𝑦_𝑙𝑎𝑛𝑒𝑠 (𝑐) the
number of busy lanes in all the cores at cycle 𝑐 , and #𝑡𝑜𝑡𝑎𝑙_𝑙𝑎𝑛𝑒𝑠
the total number of lanes available.

2.1 Existing SIMD Architectures

Let us examine each existing SIMD architecture in more detail.
• Core-Private SIMD Lanes (Figure 1(a)). As shown in Fig-
ure 2(b), this traditional SIMD architecture has the lowest SIMD
utilization, achieving 60.6% only (Figure 2(f)). The low opera-
tional intensity in WL#0 leads to frequent pipeline stalls waiting
for memory instructions to be completed.

• Temporal Sharing (Figure 1(b)). Temporal-sharing improves
SIMD utilization from 60.6% to 84.7% via time-sharing multi-
plexing, leading to a speedup of 1.41× on Core1 (and the same
performance on Core0) over the baseline with core-private SIMD
lanes (Figure 2(f)). This is because Core1 can steal the idle cycles
of the SIMD co-processor from Core0 and execute its own SIMD
instructions using all the SIMD lanes (Figure 2(c)). However, due
to the sharing mechanism, both cores compete for hardware
resources, such as vector register file (VRF) and store queues,
causing the SIMD instruction issue rates to drop significantly for
both WL#0 and WL#1. Compared to the baseline, temporal shar-
ing results in reduced SIMD issue rates for both cores, 50% for
WL#0 and 30% for WL#1 (calculated as weighed issue rates for the
three phases from Figure 2(f)), leaving the SIMD resources still
under-utilized. We will return to this temporal sharing policy in
Section 7.6.

• Static Spatial-Sharing (Figure 1(c)). By allocating 12 lanes to
WL#0 and 20 to WL#1, static spatial-sharing improves the SIMD
utilization from 60.6% to 75.6% and thus achieve a speedup of by
1.25× on Core1 (while also maintaining the same performance
on Core0) over the baseline (Figure 2(f)). Compared to temporal-
sharing, static spatial-sharing exhibits the improved SIMD issue
rates for the two workloads, 168% for WL#0 and 100% for WL#1,
since static spatial-sharing can partition both the SIMD lanes
and the VRF entries, leading to much more fine-grained resource
sharing (Figure 2(d)). In particular, static spatial-sharing can split
a single VRF entry and provide the split parts to distinct work-
loads (cores) simultaneously, reducing the stalls of the SIMD
co-processor incurred before. However, its partitioning decision
is static and stays unchanged, leading to under-utilization of
the SIMD resources. As shown in Figure 2(d), even if WL#0 has
stopped and released its occupied resources, WL#1 still cannot
use them, causing 37.5% of the SIMD resources to be wasted.
In addition, as WL#0 has two phases, p1 and p2, each phase can
be assigned a different number of SIMD lanes to achieve better
SIMD utilization.

2.2 Our Approach: Elastic Spatial Sharing

We present a software and hardware co-designed elastic MIMD-
SIMD (EM-SIMD) co-processor, Occamy, that supports dynamic
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Workload #0 (654.rom_s)
//Phase1 (rh3d.f90:1442), the body of i-loop
Ufx[i]=0.5*dndx[i]*(v[i]+v_1[i])²-dmde[i]*(v[i]+v_1[i])*(u[i]+u_1[i])
Ufe[i]=0.5*dndx[i]*(v[i]+v_1[i])*(u[i]+u_1[i])-dmde[i]*(u[i]+u_1[i])² 

//Phase2 (rho_eos.f90:1548), the body of i-loop
wrk[i]=(den[i]+1000)*(bulk[i]+0.1*z_r[i])²
Tcof[i]=-(bulkDT[i]*0.1*z_r[i]*den1[i]+den1DT[i]*bulk[i]*(bulk[i]+0.1*z_r[i]))
Scof[i]=-(bulkDS[i]*0.1*z_r[i]*den1[i]+den1DS[i]*bulk[i]*(bulk[i]+0.1*z_r[i])) 

Workload #1 (621.wrf_s/module_mp_wsm.f90:1363)
wi[k]=(ww[k]*dz[k-1]+ww[k-1]*dz[k])/(dz[k-1]+dz[k])     //the body of k-loop

(a) Workloads in SPECCPU2017 (with workload WL#0 including two memory-intensive loops and WL#1 including one computation-intensive loop)
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Arch
VL (#Lanes) SIMD Issue Rates (#Insts/Cycle) Times (×105 Cycles) Speedups

SIMD Util
WL#0 WL#1 WL#0.p1 WL#0.p2 WL#1.p1 WL#1.p2 WL#1.p3 WL#0 WL#1 WL#0 WL#1

Private 16 16 0.97 1.25 1.99 2.00 2.00 1.33 3.66 1.00× 1.00× 60.6%
Temporal 32 32 0.48 0.63 0.85 1.00 1.99 1.33 2.59 1.00× 1.41× 84.7%
Static 12 20 1.29 1.67 1.99 2.0 2.00 1.33 2.93 1.00× 1.25× 75.6%
Elastic 12/8 20/24/32 1.94 1.67 1.95 1.97 1.99 1.37 2.27 0.98× 1.62× 96.7%

(f) Performance statistics

Figure 2: Performance of co-running WL#0 and WL#1 on the four two-core SIMD architectures (Figure 1): (a) workloads WL#0
and WL#1; (b)-(e) the SIMD utilization of the four SIMD architectures (with each point in the x-axis representing a set of 1000

consecutive cycles); and (f) the performance statistics (with the SIMD utilization calculated for the entire program execution).

SIMD lane partitioning at the instruction level (Figure 1(d)). We
also introduce a compiler to analyze and pass the phase-changing
behaviors of a workload to low-level hardware. Thus, the Occamy
hardware can dynamically adjust the SIMD lanes and VRF parti-
tioning for the co-running workloads to improve SIMD utilization
and performance.

Let us see how Occamy dynamically adjusts the SIMD lanes (and
VRF) for the two cores according to the phase behaviors of WL#0, as
illustrated in Figure 2(e). The Occamy compiler analyzes the phase-
changing behaviors of WL#0 by estimating the operational intensity
(FLOPs/byte) of each phase and divides it into a memory-intensive
phase (WL#0.p1) and a less memory-intensive phase (WL#0.p2). Simi-
larly, WL#1 represents just one compute-intensive phase. By passing
this information to the SIMD hardware, Occamy starts by assign-
ing 8 SIMD lanes to WL#0.p1 and then dynamically scaling it up to
12 when WL#0.p2 is executed. When the SIMD hardware detects
that WL#0 has completed, Occamy will assign all the 32 lanes to
the co-running workload WL#1. Compared to the three existing
SIMD architectures (Figures 1(a)-(c)), Occamy achieves the best
SIMD utilization (96.7%) and the best speedup on Core1 (1.62×)
while achieving nearly the same performance on Core0 (0.98×)
(Figure 2(f)).

Occamy is capable of partitioning the SIMD lanes (and VRF)
among the co-running workloads appropriately. Its compiler passes
the inferred phase-changing behaviors of a workload to the SIMD
hardware. Its lane manager balances the hardware resources among

the co-running workloads intelligently based on a roofline model
(Section 5). Compared with the three existing SIMD architectures,
Occamy provides the best speedup for WL#1 (1.62× vs. 1.00×, 1.41×
and 1.25×) while maintaining nearly the same performance for
WL#0 (0.98× vs. 1.00×, 1.00× and 1.00×) by using fewer hardware
resources, achieving the best performance overall.

For the three existing SIMD architectures (Figures 1(a)-(c)), the
root causes of their low hardware utilization and subdued perfor-
mance improvements are that each SIMD co-processor (1) lacks
the ability to dynamically partition the hardware resources among
the co-running workloads, and (2) is unaware of program seman-
tics needed for partitioning the hardware resources among the
co-running workloads appropriately.

3 THE OCCAMY DESIGN

In this section, we give an overview of Occamy. We describe its
EM-SIMD execution model, EM-SIMD ISA (i.e., hardware-software
interface), hardware (i.e., SIMD co-processor), and software (i.e.,
the Occamy compiler).

3.1 Elastic MIMD-SIMD Execution Model

Essentially, EM-SIMD is an MIMD-SIMD hybrid execution model,
which encompasses the following key aspects:
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Table 1: Dedicated registers defined by EM-SIMD ISA (with

the vector length being represented at a granularity of 128
bits, so that <VL>=2 indicates a vector length configured to

256 bits).

Name Description

<OI> Operational Intensity of a Phase
<decision> Suggested (i.e., Requested) Vector Length
<VL> Configured (i.e., Current) Vector Length
<status> Success/Fail for Changing Vector Length
<AL> Number of Free SIMD Lanes Available

Parallelism. From the view of a multi-core processor, EM-SIMD
leverages an MIMD execution model, which abstracts the proces-
sor as consisting of a number of CPU cores that function asyn-
chronously and independently. From the view of each core, EM-
SIMD can exploit DLP via SIMD instructions.
Vector/Scalar Execution. A multi-core processor is abstracted as
including a SIMD co-processor physically shared by all the CPU
cores. The co-processor consists of a set of SIMD lanes, which can be
partitioned and assigned to different cores. Logically, the set of lanes
assigned to a core form a SIMD unit (a small-sized co-processor) for
the core. Each core issues SIMD and scalar instructions sequentially
in program order, executes them on its SIMD and scalar units,
respectively, and finally, commits them in program order.
Synchronization. After lane partitioning, each core uses its own
SIMD unit to execute SIMD instructions with all its lanes operating
in lock-step, without the need of explicit synchronization. Our EM-
SIMD model does not provide any synchronization between the
SIMD units across the cores, since this, if needed, can be defined
by the CPU cores.

3.2 EM-SIMD ISA

To support our EM-SIMD execution model, we describe the EM-
SIMD ISA used. This provides a hardware-software interface at
the ISA level for the software (the programmer or the compiler) to
request the hardware to dynamically adjust the vector length for a
CPU core at a granularity of 128 bits (i.e., the minimum supported
in ARM SVE). While we describe EM-SIMD ISA as an extension to
ARM SVE, the basic principle introduced applies to any ISA that
makes programs agnostic to the underlying hardware vector length.

Our ISA extension features a set of instructions reading/writing
a set of five dedicated registers (Table 1) via MRS/MSR in ARM to
provide the following functionalities.
Phase-Behaviors. For each workload, the software (programmer
or compiler) can delineate each of its phases and describe its behav-
ior bywriting its operational intensity (FLOPs/byte) into a dedicated
register <OI> at its beginning and end.
Lane-Partitioning. A lane-partition plan for dividing the SIMD
lanes among the co-running workloads, which is usually done by
the hardware based on their phase behaviors maintained in <OI>,
is stored in a dedicated register <decision>.
Vector-Length Reconfiguration. For each workload, the soft-
ware is allowed to reconfigure its vector length by inserting an
instruction writing a new one 𝑣𝑙 into a dedicated register <VL>,
with a dedicated register <status> recording whether the recon-
figuration is successful or not. If this is successful, then the ensuing
SIMD instructions (in program order) will be executed under 𝑣𝑙
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Figure 3: The Occamy design.

until another vector-length reconfiguration succeeds. The Occamy
compiler guarantees program correctness for vector-length recon-
figuration (Section 6).

3.3 The Hardware and Software Co-Design

To understand the capabilities of the hardware (SIMD co-processor)
and software (compiler) in Occamy, Figure 3 sketches the Occamy
architecture for a two-core processor, with both interacting via the
EM-SIMD ISA as shown.
SIMD Co-Processor. There are two components: an Elastic
Reconfiguration Core (Section 4) and an on-chip resource man-
ager, LaneMgr (Section 5). The Elastic Reconfiguration Core
consists of a number of homogeneous function units that can be
assembled into SIMD data paths of varying widths according to a
resource table, ResourceTbl, defined by EM-SIMD’s five dedicated
registers. LaneMgr serves to partition elastically all the SIMD lanes
across the CPU cores (i.e., generate a lane-partition plan) according
to the phase behaviors of their co-running workloads whenever a
workload enters into or exits from a phase.
Compiler. The Occamy compiler inserts the required EM-SIMD
ISA extension instructions into each workload by describing its
phase-behaviors and requesting vector-length reconfiguration (Sec-
tion 6). To define the behavior of a phase, the compiler will divide
a workload into a number of phases (with a loop typically being
regarded as a phase) and determine the behavior characteristics of
each phase by analyzing its computations and memory accesses.
To request for vector-length reconfiguration, the compiler will gen-
erate code that queries a new lane-partition plan and requests for
the new vector length to be configured at runtime.
Workflow.At the EM-SIMD ISA level, Occamyworks in two stages:
(1) triggering a new lane partition to generate a set of new vector
lengths for the co-running workloads, and (2) reconfiguring the vec-
tor length for each CPU core. The Occamy compiler is responsible
for determining when these two stages will happen by inserting the
required EM-SIMD instructions at some selected program points.
Given a set of co-running workloads, the first stage takes place
when one workload enters into or exits from one of its phases.
For each phase, the Occamy compiler has inserted an EM-SIMD
instruction that writes its operational density (currently specified
as a pair of values (Section 6.3)) into <OI> at its beginning and 0
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into <OI> at its end. Whenever such an instruction is executed,
LaneMgr will fetch the phase behaviors of the co-running work-
loads stored in <OI> and then generate a new lane-partition plan
in <decision>. For each workload, the second stage takes place at
a program point when it is legal to switch to the new vector length
recommended. At such a point, the workload will execute a set of
EM-SIMD instructions that retrieve the recommended vector length
from <decision> and then request it to be changed by writing it
to <VL>.

4 OCCAMY: THE MICRO-ARCHITECTURAL

SUPPORT

We discuss our micro-architectural support for the EM-SIMD ISA
for a two-core processor with Occamy embedded on-chip as shown
in Figure 4. In Section 4.1, we look at how EM-SIMD instructions
(for reading (writing) the five dedicated registers via MRS (MSR)) and
SVE instructions are transmitted from scalar cores to Occamy. In
Section 4.2, we look at three types of data paths in Occamy, the
EM-SIMD data path for executing EM-SIMD instructions and the
SIMD compute and ld/st data paths for executing SVE instructions,
and explain how to reconfigure the widths of the latter two SIMD
data paths, with respect to our micro-architecture in Figure 5.

4.1 Interaction between Scalar Cores and

Occamy

Occamy is tightly coupled with multiple out-of-order scalar (CPU)
cores, with instructions transmitted from scalar cores to Occamy
for execution. It maintains instruction ordering to deal with data
dependency and address overlap hazards.

4.1.1 Transmitting Instructions. All the EM-SIMD and SVE instruc-
tions are transmitted from a scalar core to Occamy, enqueued into
its Instruction Pool (Figure 5) for execution. This happens when
each instruction becomes non-speculative (non-squash) in its scalar
pipeline for a scalar score, so that if a pipeline flush occurs in either
the scalar core or Occamy, the other pipelines in both will not be
affected. In particular, these EM-SIMD and SVE instructions are
transmitted after being retired from their scalar pipelines and thus
enqueued to Occamy in order. However, there is one exception: the
EM-SIMD instruction reading <decision> via MRS can be specu-
latively transmitted to Occamy to reduce runtime overhead. The
Occamy compiler is responsible for ensuring correctness in this
case, as discussed in Section 6.4.

4.1.2 Maintaining Instruction Ordering. Table 2 summarizes how to
maintain instruction ordering for a pair of instructions, ⟨older ins-
truction, younger instruction⟩, by considering a total of nine
possibilities for three types of instructions: Scalar, SVE and EM-SIMD.
⟨Scalar, Scalar⟩ is standard.Wewill discuss ⟨SVE, SVE⟩, ⟨SVE, EM-
SIMD⟩ and ⟨EM-SIMD, EM-SIMD⟩, which aremanaged by theOccamy
hardware, in Section 4.2, and ⟨EM-SIMD, SVE⟩, which is managed by
the Occamy compiler, in Section 6.4. Below we examine the four re-
maining pairs involving a scalar instruction and an SVE/EM-SIMD
instruction, managed by scalar scores.

To maintain instruction ordering due to data dependency or
address overlap, scalar cores detect data dependency in renaming
scalar registers for each instruction and address overlap by using a

Table 2: Maintaining instruction ordering.

Older Instruction

Scalar SVE EM-SIMD

Y
o
u
n
g
e
r
I
n
s
t
r
u
c
t
i
o
n

S
c
a
l
a
r

Managed by scalar
cores: standard

Managed by scalar cores: delay issuing
the younger scalar inst until the SVE/EM-
SIMD inst writes back or completes its
memory access

S
V
E

Managed by scalar
cores: delay
transmitting the
younger inst to
Occamy until scalar
operands ready or
the scalar inst’s
memory access
completed

Managed by the
OCCAMY
hardware: standard

Managed by the
Occamy compiler :
repeatedly writes
<VL> until success

E
M
-
S
I
M
D

Managed by the
OCCAMY
hardware: <VL>
changes after the
corresp. SIMD
pipeline is drained

Managed by the
OCCAMY
hardware: execute
the EM-SIMD inst
in order

Memory Ordering Buffer (MOB), which tracks the memory regions
within which at least one SVE ld/st instruction has not yet com-
pleted, after generating and translating the addresses for all scalar
and SVE ld/st instructions.

Let’s now consider two cases: (1) ⟨Scalar, SVE⟩ or ⟨Scalar, EM-
SIMD⟩, and (2) ⟨SVE, Scalar⟩ or ⟨EM-SIMD, Scalar⟩. For each pair
of instructions in both cases, scalar cores will delay handling the
younger one until the scalar operands are ready when ordered due
to data dependency or the matched MOB entries are deallocated
when ordered due to address overlap. Note that Occamy includes
special data paths to write back scalar results and signal the com-
pletion of an memory access (as shown in Figure 5). Let us examine
one such a pair of instructions for a scalar core. For (1), the scalar
core will delay transmitting the younger EM-SIMD/SVE instruction
to Occamy, and in case when it has been speculatively transmitted
(for an instruction reading <decision>), the Occamy compiler will
ensure correct execution. For (2), the scalar core will delay issuing
the younger scalar instruction, and in case when it has been specu-
latively issued or hit an MOB entry, its scalar pipeline will flush to
maintain the correct ordering.

4.2 Elastic Spatial-Sharing

Figure 5 depicts the Occamy micro-architecture, in which small
modifications have been made to the standard out-of-order SIMD
pipelines (Section 4.2.1). With these small modifications, Occamy
is now capable of flexibly reconfiguring the widths of its SIMD data
paths at runtime (Section 4.2.2).

4.2.1 Modifying OoO SIMD Pipelines. We have modified SIMD
Execution Units and Register File, and introduced three new
tables, a resource table ResourceTbl in Manager, and two config-
uration tables (ConfigTbls), with one in Dispatcher and one in
Register File.
ModifiedComponents. We have designed SIMD Execution Units
as a set of 𝑁 homogeneous basic execution units (ExeBUs in Fig-
ure 5), with each performing 128-bit SIMD operations (supporting
all integer/float-point data types specified in ARMv8-A [36]). The
Register File adopts a semi-custom physical design, partitioned
into 𝑁 distinct blocks (RegBlks), with each consisting of a set of
(configured as 160 in our evaluation) 8R4W 128-bit physical vector
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Figure 5: The Occamy micro-architecture.

registers and a set of (configured as 64 in our evaluation) 8R4W
16-bit physical predicate registers, denoted VRegs and PRegs, re-
spectively. Each ExeBU is connected to a distinct RegBlk, with both
always being assigned to the same scalar core together.
Introduced Tables. Suppose Occamy is used to serve 𝐶 scalar
cores. Then ResourceTbl consists of (4 ∗ 𝐶 + 1) 32-bit registers,
including 4 dedicated registers (the first four in Table 1) per core
and one dedicated register <AL> shared by all the cores (Figure 3).
Each ConfigTbl table consists of 𝑁 registers, with each using
⌈log2 (𝐶 + 1)⌉ bits to record (𝐶 + 1) possible states. Each register
in Dispatcher.Cfg (ConfigTbl in Dispatcher) records the owner-
ship of an ExeBU, with its states ranging over {free, core0, core1, ...}.
Similarly, each register in RegFile.Cfg (ConfigTbl in Register
File) records the ownership of a RegBlk.

To scale Occamy up, some changes are to be made:
• The three tables introduced, must be enlarged, in order to
record the states corresponding to more cores added;

• The data paths and control logic in some components, e.g., in-
struction pipelines in Instruction Pool/Decoder/ Renamer/
Dispatcher/LSU/ROB, must be expanded; and

• Other function/storage units, e.g., SIMD Execution Units/
Register File/VecCache, can be optionally increased in
quantity in order to improve performance.

Increasing the first two types of resources adds little area cost to
Occamy, e.g., 3% when scaling from 2 to 4 cores.

4.2.2 Reconfiguring SIMD Data Paths. At runtime, Occamy can dy-
namically build SIMD data paths (two per core as shown in Figure 4)
with a width of 128× 𝑙 bits for core 𝑐 , once an EM-SIMD instruction
writing 𝑙 to <VL> has been received from core 𝑐 and successfully
executed. This instruction will update the three introduced tables,
with the ownership of 𝑙 ExeBUs set to core 𝑐 in Dispatcher.Cfg
and the ownership of 𝑙 RegBlks connected to these 𝑙 ExeBUs also
set to core 𝑐 in RegFile.Cfg. Thus, the ensuing SVE instructions

from core 𝑐 will be executed on the SIMD data paths consisting of
these 𝑙 ExeBUs and 𝑙 RegBlks until another EM-SIMD instruction
writing <VL> from core 𝑐 has been successfully executed.

Figures 6(a)-(c) illustrate the execution of EM-SIMD, SVE com-
pute, and SVE ld/st instructions, as explained below.
Executing EM-SIMD Instructions. All EM-SIMD instructions
are processed in order in an EM-SIMD data path shared by all the
cores (Figure 4). Suppose that Occamy has received a vector-length
re-configuration instruction MSR <VL>, 𝑙 from core 𝑐 . It will update
a set of registers atomically if (1) 𝑐.<VL> + <AL> ≥ 𝑙 (number of
requested lanes is available), and (2) the SIMD pipeline associated
with core 𝑐 is drained:

• ResourceTbl: Set <AL> to 𝑐.<VL>+ <AL>− 𝑙 , 𝑐.<VL> to 𝑙 , and
𝑐.<status> to 1.

• Dispatch.Cfg and RegFile.Cfg: Free all the ExeBUs and
RegBlks previously occupied by core 𝑐 and assign 𝑙 free
ExeBUs and their associated RegBlks to core 𝑐 . The data
values in these freed RegBlks are not preserved since the
Occamy compiler ensures that they will not be used.

• Core 𝑐: Set the SVE control register <ZCR>, which stores the
vector length according to the ARM specification, to 𝑙 .

As for instruction ordering involving SVE and EM-SIMD instruc-
tions (Table 1), ⟨EM-SIMD, EM-SIMD⟩ is maintained since both are
executed in order, and ⟨SVE, EM-SIMD⟩ is maintained since the SVE
instruction is executed under the old vector length and the new
one will only come into effect after the SIMD pipeline associated
with core 𝑐 is drained.
Executing SVE Compute Instructions. When an SVE compute
instruction from core 𝑐 reaches Dispatcher, 𝑙 identical 𝜇ops are
dispatched with each routed to an ExeBU owned by core 𝑐 according
to Dispatch.Cfg. Each ExeBU fetches the operands from its RegBlk,
operates on them, and produces a 128-bit result. The results from the
𝑙 ExeBUs are written back synchronously into the 𝑙 physical vector
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Figure 6: Execution of an EM-SIMD/SVE instruction in core

0.

registers residing in the 𝑙 RegBlks, to ensure atomic instruction
execution.
Executing SVE ld/st Instructions. When an SVE ld/st instruc-
tion from core 𝑐 reaches Dispatcher, the dispatched 𝜇op will be
appended with the width of its memory access, i.e., 128 × 𝑙 bits
according to Dispatch.Cfg. For an SVE load instruction, the LSU
will request 128 × 𝑙 bits data from VecCache and store the data
synchronously into the 𝑙 physical vector registers residing in the 𝑙
RegBlks according to RegFile.Cfg. Similarly, an SVE store instruc-
tion is handled.

Finally, Occamy proceeds in the standard manner to maintain
instruction ordering for ⟨SVE, SVE⟩ (Table 1), where SVE is either
an SVE compute or SVE ld/st instruction.

5 OCCAMY: THE SIMD LANE MANAGER

The SIMD lane manager, LaneMgr (Figure 5), is implemented in
hardware for deciding when and how to re-partition all the SIMD
lanes among a set of co-running workloads. LaneMgr uses a monitor
listening for a lane re-partition, i.e., MSR instruction in a workload
that writes <OI> to indicate a phase-changing point in the workload
(with the beginning of a phase set as its operational intensity (in
FLOPs/Byte) and the end as 0). On seeing such an instruction,
LaneMgr will go ahead to find a lane-partition plan. This is done
by obtaining the phase behaviors of the co-running workloads
from <OI>, determining a lane partition plan by using a vector-
length-aware roofline model, and finally, recording the plan in
<decision>.

We need to address two challenges faced in lane partitioning: (1)
how to predict the performance of a workload for a given number
of ExeBUs, and (2) how to design an algorithm to partition all the
ExeBUs across all the co-running workloads.

We formalize this problem for a 𝐶-core processor as follows.
Given WL = {WL1, ...WLM} as𝑀 co-running workloads that are cur-
rently executing some phases, i.e., vectorized loops (where𝑀 ≤ 𝐶)
and 𝑁 ExeBUs to be partitioned, we aim to find a lane partition
plan, {𝑣𝑙1, ..., 𝑣𝑙𝑀 }, that maximizes the overall performance of WL,
where 𝑣𝑙𝑖 represents the number of ExeBUs allocated to WLi, subject
to the following constraints:

∀ 𝑖 : 𝑣𝑙𝑖 > 0 and
𝑀∑︁
𝑖=1

𝑣𝑙𝑖 ≤ 𝑁 (1)

We assume that lane partitioning and task scheduling work
independently so that we can consider only the workloads cur-
rently scheduled to execute. For other policies, it may be more prof-
itable to let both work together. Under commonly used OS policies
(e.g., first-come-first-serve), resource contention will not happen
when compute-intensive tasks are scheduled to run, since context-
switching will trigger a new lane partitioning process. Specifically,
the OS will save the contexts (including the five EM-SIMD dedi-
cated registers) when all the pipelines (including those in Occamy)
are drained, and restore <OI> using MSR (when <OI>≠ 0), to trigger
lane partitioning.

5.1 Vector-Length-Aware Roofline Model

To predict the performance of a workload for a given number
of ExeBUs, we use a roofline model to represent the architecture-
specific performance ceilings. The basic roofline model has been
extended by considering a range of hardware issues, e.g., cache
hierarchy [21, 44], NUMA [28], software prefetching and local-
ity [40, 41], and instruction- and task-level parallelism [40]. The
key challenge is that Occamy supports variable-length SIMD mode,
leading to variable peak performance for SIMD compute instruc-
tions and variable widths for SIMD load/store instructions. We have
extended the basic roofline model to accounts for such variability
by modeling the computation, memory-bandwidth, and SIMD-issue-
bandwidth ceilings, where the first and last are related to the vector
length.
ComputationCeilings. It is simple to compute the variable-vector-
length SIMD performance as the performance ceilings of one ExeBU
multiplied by 𝑣𝑙 , illustrated by the horizontal lines annotated with
FP peak (1 ≤ 𝑣𝑙 ≤ 4) in Figure 7(a) for peak floating-point perfor-
mance in single precision.
Memory-Bandwidth Ceilings.We leverage the hierarchical roof-
line model [21] to obtain the bandwidth ceilings of (unified) L2
cache and memory, as shown by the two lines annotated with L2
BW and DRAM BW in Figure 7(a), respectively.
SIMD-Issue-Bandwidth Ceilings.We have observed that the bot-
tleneck for memory access will shift from memory bandwidth to
SIMD issue bandwidth, when the SIMD ld/st data path is not wide
enough which happens potentially in variable vector-length SIMD
processing. Figure 7(b) depicts an abstract SIMD ld/st data path. In
particular, Dispatcher can send at most two vector memory 𝜇ops
to LSU per cycle, meaning that LSUmay request at most 2× 128× 𝑣𝑙

bits (32 × 𝑣𝑙 bytes) data from VecCache per cycle. When a core
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Figure 7: A Vector-length-aware roofline model.

is assigned with a small number of lanes, the SIMD issue band-
width (32B/cycle when 𝑣𝑙 = 1) will be smaller than L2 BW (fixed
at 64B/cycle), becoming the bottleneck for memory access. So we
define the SIMD issue bandwidth (B/cycle) of a core as:

SIMD-Issue_BW = SIMD-issue_𝑤𝑖𝑑𝑡ℎ × 𝑣𝑙 × 16 (2)
where 𝑆𝐼𝑀𝐷-𝑖𝑠𝑠𝑢𝑒_𝑤𝑖𝑑𝑡ℎ gives the number of vector memory
𝜇ops dispatched per cycle, and 16 represents 128 bits in bytes.

Finally, we have plotted the SIMD-issue bandwidth ceilings in
Figure 7(a), as the four lines in light gray for 1 ≤ 𝑣𝑙 ≤ 4.

5.2 Algorithm

LaneMgr uses a greedy algorithm to partition a set of ExeBUs (i.e.,
SIMD lanes) for a set of co-running workloads in three steps. First,
one ExeBU is assigned to each workload currently executing a phase
(with its operational intensity <OI> ≠ 0).

Second, the algorithm iteratively assigns the remaining ExeBUs
to these workloads. In each iteration, it sorts the workloads in
decreasing order of their net performance gains obtained when
each workload receives one extra ExeBU, and then assigns one
ExeBU to each workload with a positive gain in that order. The net
performance gain of a workload WL (running in the current phase
recorded in <OI>) when moving from 𝑣𝑙 to 𝑣𝑙+1 ExeBUs is estimated
as follows:

net_perf_gain𝑣𝑙,𝑣𝑙+1 = 𝐴𝑃𝑣𝑙+1 (<OI>) − 𝐴𝑃𝑣𝑙 (<OI>) (3)
where𝐴𝑃𝑙 (<OI>) denotes the performance attainable by using our
roofline model that accounts for both the computation and SIMD-
issue-bandwidth ceilings for vector length 𝑙 , denoted 𝐹𝑃_𝑝𝑒𝑎𝑘𝑙
and 𝑆𝐼𝑀𝐷-𝑖𝑠𝑠𝑢𝑒_𝐵𝑊𝑙 , as well as memory ceiling𝑚𝑒𝑚_𝐵𝑊 (which
is specific to a chosen level in memory hierarchy, e.g., 𝐿2 𝐵𝑊 or
𝐷𝑅𝐴𝑀 𝐵𝑊 but unrelated to 𝑙 ):

𝐴𝑃𝑙 (<OI>) = min{𝐹𝑃_𝑝𝑒𝑎𝑘𝑙 , 𝑆𝐼𝑀𝐷-𝑖𝑠𝑠𝑢𝑒_𝐵𝑊𝑙

× <OI>.𝑖𝑠𝑠𝑢𝑒, 𝑚𝑒𝑚_𝐵𝑊 × <OI>.𝑚𝑒𝑚} (4)

where <OI>.𝑖𝑠𝑠𝑢𝑒 and <OI>.𝑚𝑒𝑚 are defined in Section 6.3.
Finally, the algorithm terminates when all the ExeBUs available

have been allocated or no workload can have any further perfor-
mance gain even when given more ExeBUs.
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Figure 8: Eager-lazy lane partitioning for Figure 2(a).

Let us look at its fairness. When only compute-intensive work-
loads are co-running, the SIMD lanes will be divided equally, avoid-
ing hardware contention, since each workload always benefits with
more ExeBUs allocated according to Equations (3) and (4). When
memory- and compute-intensive workloads are co-running, Oc-
camy ensures that each workload receives at least one ExeBU, avoid-
ing "starving out" completely. To improve fairness further, perform-
ing lane partitioning and OS scheduling together may be preferred.

6 OCCAMY: THE COMPILER

Given a workload, the Occamy compiler inserts EM-SIMD instruc-
tions at its selected program points to (1) trigger a lane partition
plan to be generated, and (2) ask for a suggested new vector length
to be set. In Section 6.1, we introduce an eager-lazy lane partitioning
approach that performs (1) eagerly but (2) lazily. In Section 6.2, we
incorporate this approach into a vectorized loop. In Section 6.3,
we explain how to specify the phase behaviors of a workload at
its eager lane partition points. In Section 6.4, we describe how to
ensure program correctness at the lazy lane partition points of each
workload.

6.1 Eage-Lazy Lane Partitioning

The key idea is to prevent a workload from changing the vector
length used in the middle of an iteration of a vectorized loop, so
that program correctness can be easily maintained. According to
our eager-lazy partitioning approach, a workload can trigger a lane
partition plan to be generated eagerly when it enters into or exits
from a phase (i.e., a loop). However, a co-running workload can
only request lazily for the new vector length recommended by this
plan to be reconfigured at the the beginning of an iteration of a
loop (i.e., one of its phases).

Figure 8 illustrates one possible lane-partitioning scenario for our
motivating example in Figure 2. WL#0 contains four eager partition
points but only two lazy partition points. The prologue and epilogue
of a phase are explained below.

6.2 Lane-Partitioning-Enabled Vectorized Code

Figure 9 gives a vectorized code with EM-SIMD instructions in-
serted to support our eager-lazy lane partitioning approach.
Code for Eager Partitioning. The eager lane partition points
are just before and after a vectorized loop (i.e., a phase), i.e., Phase
Prologue and Phase Epilogue, respectively. In Phase Prologue, the MSR
<OI>,X1 instruction is inserted to pass the behavior of this phase to
LaneMgr to trigger a new lane partition plan to be generated and the
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   MSR <OI>, X1 // X1 contains this phase's OI
L1:MSR <VL>, X2 // X2 contains a compiler-selected default 
   MRS X3, <status>
   BNE X3, 1, L1

Vec-loop

Strip (s)

Phase

Prologue

Loop

Remainder

Partition
Monitor

Vector Length

Reconfigurationtc / (VL*s)

tc % (VL*s)

/* Avoid tripcount overflow */ 

Phase

Epilogue

MRS X4, <decision>
BNE X4, X2, L2

L2:MOV X2, X4
L3:MSR <VL>, X2 // Set VL=<decision>
   MRS X3, <status>
   BNE X3, 1, L3 

/*VL <decision> */

       MSR <OI>, 0 // Set OI=0
L4:MSR <VL>, 0 // Set VL=0  
   MRS X3, <status>
   BNE X3, 1, L4

Eager Partitioning

Lazy Partitioning

Eager Partitioning

Lazy Partitioning

Figure 9: A vectorized loop incorporating eager-lazy lane

partitioning for supporting elastic vector lengths, where𝑋1−
𝑋4 are general registers, 𝑡𝑐 denotes the (scalar) loop tripcount,

and 𝑠 represents the length of a stripmined loop segment.

three-instruction loop sets the vector length to a compiler-selected
default (since it was 0 on arriving at this point). In Phase Epilogue,
LaneMgr is triggered again to release all the lanes occupied by the
loop.
Code for Lazy Partitioning. The lazy lane partition points reside
at the beginning of each iteration in a vectorized loop, marked as
Partitioning Monitor and Vector Length Reconfiguration. The Parti-
tion Monitor checks whether a co-running workload has caused a
new lane partition plan to be generated by using MRS X4,<decision>.
If this happens, the Vector Length Reconfiguration code will be exe-
cuted to switch to the new vector length if it is different from the
current one. The branch to Loop Remainder is needed so that some
extra loop bound check is done to avoid a tripcount overflow.

6.3 Phase Behavior Analysis

To describe the behavior of a phase (loop) delineated by Phase
Prologue and Phase Epilogue (Figure 9), its operational intensity
is written into <OI> in Phase Prologue and 0 into <OI> in Phase
Epilogue. The operational intensity (in Flops/Byte) of a vectorized
loop is defined in terms of the following two quantities (without
considering its trip count):

<OI>.𝑖𝑠𝑠𝑢𝑒 =
𝑐𝑜𝑚𝑝∑𝑖≤𝑚𝑒𝑚

𝑖=1 𝑏𝑦𝑡𝑒𝑖𝑡𝑦𝑝𝑒

<OI>.𝑚𝑒𝑚 =
𝑐𝑜𝑚𝑝

𝑓 𝑝

(5)

where 𝑐𝑜𝑚𝑝 (𝑚𝑒𝑚) is the number of SIMD compute (memory-
access) instructions in the loop body, 𝑏𝑦𝑡𝑒𝑖𝑡𝑦𝑝𝑒 is the size of the
data type used in the 𝑖-th memory access instructions (in bytes),
and 𝑓 𝑝 is the memory footprint of SIMD memory-access instruc-
tions in one iteration (with data reuse considered). In the absence
of data reuse, <OI>.𝑖𝑠𝑠𝑢𝑒 = <OI>.𝑚𝑒𝑚.

In addition, two optimizations are included to avoid frequent lane
re-partitions. First, code hoisting is leveraged to hoist Phase Prologue
and Phase Epilogue from inside a loop to outside to avoid chaining
phase-changing points for the same phase. Second, multiple-version
code generation [6, 26] is leveraged to handle loops with small trip

counts, so that we can choose their non-vectorized code variants
at runtime.

Currently, Occamy supports elastic vector lengths only for vec-
torized loops containing no synchronization inside.

6.4 Program Correctness

We can leverage any existing vectorization algorithm [7, 8, 23, 39,
48] that can produce a vectorized loop for the maximum vector
length available. To support lane re-partitioning, the Occamy com-
piler has also generated extra code for a workload to execute after
it has received a new vector length (Figure 9) for (1) re-initializing
the SIMD registers containing loop-invariants for the new vector
length, (2) completing the partial result for a reduction variable
obtained so far so that the partial result can be used to start the next
round of reduction under the new vector length. Nothing needs to
be done for a SIMD register using fresh values loaded from memory
(directly or indirectly) at the beginning of each iteration.

To maintain instruction ordering for ⟨EM-SIMD, SVE⟩ (Table 1),
the compiler encloses an instructionwriting <VL>with a while loop
testing whether <status> has turned into 1 in order to ensure that
the subsequent SVE instructions are executed under the new vector
length (Figure 9). In addition, an instruction reading <decision> in
the Partitioning Monitor may read an old value due to speculation,
but this will not lead to a program error, since the Occamy compiler
ensures program correctness for any vector length set at this point.

7 EVALUATION

We show that Occamy improves the prior art in exploiting DLP by
supporting elastic spatial-sharing for SIMD resources.

7.1 Experimental Setups

Workloads.We have created 34 workloads from 28 loops in SPEC−
CPU2017 [10] and 14 kernels in OpenCV, as given in Table 3. For
SPECSpeedInt, we have considered a total of 76 loops that are
vectorized by LLVM13.0/gfortran7.5 and actually executed under
the REF input. For SPECSpeedFP, we have considered a total of 186
such vectorized and executed loops such that each loop resides in a
hot function that consumes more than 10% of the execution time
of its containing program. For these 262 loops, we have further
excluded 234 since they each simply update an array with a single
operation or iterate for less than 128 iterations. To evaluate Occamy,
the loops in FORTRAN have been rewritten in C++. For OpenCV, we
have selected 14 memory-intensive and compute-intensive kernels
from the core and imgproc modules.

Our workloads are compiled by the Occamy compiler, with its
elastic vectorization implemented in LLVM 13.0. The compiler op-
tions −O3 and −scalable − vectorization = preferred are ap-
plied, targeting armv8.2 − a + sve.
Architectures and Configurations.We have modeled a 2-core
ARM processor, interfacing with the four SIMD architectures in
Figure 1, by using the gem5 cycle-level simulation infrastructure [5].
Table 4 lists their micro-architectural parameters. In Private, only
core-private SIMD lanes are used as in Figure 1(a), implemented
as standard fixed-vector-length SIMD units dedicated to each core.
FTS and VLS are from [4], representing the temporal-sharing and
static spatial-sharing alternatives shown in Figures 1(b) and (c).
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Table 3: Workloads (where 𝑜𝑖𝑚𝑒𝑚 represents the operational intensity defined in Equation (5) (with data reuse considered)).

SPEC Phases (𝑜𝑖𝑚𝑒𝑚 ) SPEC Phases (𝑜𝑖𝑚𝑒𝑚 ) OpenCV Phases (𝑜𝑖𝑚𝑒𝑚 )
WL1 select_atoms2 (0.25)+ step3d_uv2 (0.09) WL13 set_vbc2 (0.56) WL1 fitLine2D (0.92)
WL2 select_atoms1 (0.25) + step3d_uv4 (0.13) WL14 set_vbc1 (0.56) WL2 addWeight (0.33) + compare(0.25)
WL3 rhs3d1 (0.13) + select_atoms3(0.25) WL15 rhs3d5 (0.32) WL3 rgb2xyz (0.63)
WL4 select_atoms4(0.083) + select_atoms5(0.75) WL16 wsm51(1) WL4 calcDist3D (0.875)
WL5 step3d_uv1(0.11)+ rhs3d7(0.17) WL17 wsm52(1) WL5 rgb2hsv (1.83)
WL6 rho_eos1 (0.09)+ rho_eos4 (0.16) WL18 wsm53(0.56) WL6 accProd (0.17) + dotProd(0.25)
WL7 rho_eos5 (0.08)+ select_atoms3 (0.25) WL19 rho_eos2 (0.25) WL7 normL1 (0.5) + normL2(0.25)
WL8 rho_eos2 (0.25)+ rho_eos6(0.06) WL20 sff2 (0.13)+ sff5(0.21) WL8 compare (0.25) + accProd (0.17)
WL9 wsm53 (0.56)+ select_atoms5 (0.25)

WL21
sff5 (0.16)+ WL9 blend(0.3) +fitLine3D(0.44)

WL10 rhs3d1 (0.13)+ rho_eos4 (0.16) rho_eos6 (0.06) WL10 dotProd (0.25) + addWeight(0.33)
WL11 step2d1 (0.22)+ step2d6 (0.18)

WL22
rho_eos2 (0.08)+ WL11 blend (0.3) + compare(0.25)

WL12 step3d_uv3(0.13)+ step3d_uv1 (0.11) step3d_uv1 (0.11) WL12 rgb2ycrcb(0.42) + rgb2gray(0.31)

Occamy is our SIMD architecture supporting elastic spatial-sharing
in Figure 1(d).

We have formed 25 pairs of co-running workloads, with 1 <mem-

ory, memory>, 2 <compute, compute>, and 22 <memory, com-

pute>. In the last case, we run the memory-intensive workload
on Core0 and the compute-intensive workload on Core1. All the
averages used are geometric means.

Table 4: Micro-architectural parameters for Figure 1.

Private FTS VLS Occamy

2 Scalar Cores, TaiShan V110-Extensive Architecture [42],
8-Issue ARMv8-A Superscalar Out-of-Order Pipeline, 2GHz

16 Lanes/Core 32 Lanes for a 2-Core Configuration
Vector Issue Width - 4 (SIMD Execution Units - 2, ld/st Units - 2)

Area: 1.263𝑚𝑚2 Area: 1.265𝑚𝑚2

VRF: 10KB/Core VRF: 20KB for a 2-Core Configuration
64KB Private L1I/D per Scalar Core - Latency 4 Cycles - Cache Line 64B

128KB Vec Cache - Latency 5 cycles - Cache Line 64B
8MB Shared Unified L2 - Latency 18 Cycles - Cache Line 64B

4 GB 64GB/s Memory

7.2 Performance

Figure 10 gives the performance for the four SIMD architectures
(with Private as the baseline). FTS, VLS, and Occamy outperform
Private by 1.20×, 1.11× and 1.39×, respectively, on average, for
compute-intensive workloads executed on Core1 while faring sim-
ilarly as Private for memory-intensive workloads on Core0, since
they are capable of assigningmore SIMD lanes to compute-intensive
workloads. In particular, Occamy is the best performer by adopting a
more flexible sharing policy that requires little hardware resources.
FTS will consume abundant physical registers to keep separate con-
texts for each core while VLS adopts a static sharing policy that is
not well suited for all the phases.

Figure 11 gives their SIMD utilization. On average, Private is
the worst achieving 63.2%. By sharing the SIMD lanes, FTS, VLS, and
Occamy have improved it to 72.5%, 70.8%, and 84.2%, respectively,
with Occamy as the best.

7.3 Area

We have implemented the key components in the four SIMD archi-
tectures, e.g., issue pipe/hiq/lhq/stq in LSU and ResourceTbl/control
logic/fifo in Manager in RTL and synthesized them with TMSC 7nm
technology by using Synopsys Design Compiler 2019.03 SP1 [38]
under the implemented design at TT/0.75V/85◦C/2GHz. In addi-
tion, the key parameters in our simulator, e.g., memory access and
execution pipeline latencies (Table 4) have been set based on this
RTL simulation.
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Figure 10: Speedups (with Private as the baseline).
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Figure 11: SIMD utilization.

Figure 12 gives an area break down for the four SIMD architec-
tures, indicating that SIMD execution units, ld/st units and register
files are the most area-consuming components. Note that Occamy
does not introduce notable area costs since the Manager (Figure 5)
takes less than 1% of the total area.

In particular, FTS enables temporal sharing by multiplexing but it
must maintain separate contexts for each core in register files. As a
result, the physical register pressure increases significantly, causing
instructions to be blocked frequently in the Renamer waiting for
free registers. Figure 13 shows the fraction of cycles with some
instructions blocked, indicating that renaming stalls happen in over
70% cycles on FTS on average compared with hardly any on the
other three architectures.

7.4 Case Studies

Weexamine three different categories ofmemory/compute-intensive
co-running workloads, <memory, compute> , <compute, compute>
and <memory, memory>. Note that Occamy aims mainly to im-
prove performance for the first category. After that, we look at a
case where FTS outperforms Occamy.
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Figure 13: Fraction of cycles waiting for free registers on FTS.

Case 1: <memory, compute>. Let us analyze WL20 + W17 in Fig-
ure 14, where WL20 has two phases p1 and p2 and WL17 has just
one (Table 3). Figure 14(a) gives their execution times with varying
SIMD resources. For WL20.p1 (WL20.p2), no performance gain is at-
tained when more than 8 (12) lanes are used. In contrast, WL17 can
always benefit with more lanes. This suggests that why Private is
ineffective for such a workload since it always assigns 16 lanes to
each workload.

In Occamy, LaneMgr allocates just enough lanes to each workload
eastically. Specifically, WL20.p1 (WL20.p2) receives 8 (12 lanes) but
WL17 benefits with more lanes. As a result, LaneMgr allocates to it all
the remaining free lanes, i.e., 24/20/32 to p1/p2/p3, where p3 is the
last phase when W17 runs alone (Figure 14(b)). This vector length
flexibility leads to improved SIMD issue rates for memory-intensive
phases, from 0.96/1.22 on Private to 1.88/1.65 for WL20.p1/p2, as
revealed in Figure 14(c). Thus, Occamy has boosted the performance
of WL17 by 1.63× over Private, without reducing the performance
of WL20 (Figure 10).

VLS statically allocates 12 lanes to WL20, resulting in 4 lanes
underutilized in WL20.p1, causing the SIMD issue rate to drop
to 1.26 compared with 1.88 on Occamy. Unfortunately, WL17 can-
not use these wasted lanes, resulting in a speedup of 1.25× only.
By exploiting temporal sharing, FTS can more flexibly adjust the
SIMD issue rates in the three phases, resulting in 0.77/0.89/2 for
WL17.p1/p2/p3, as the operational intensity of WL20 changes. How-
ever, this flexibility comes at a price of causing instructions to be
blocked in Renamer waiting for free registers for 82.9/65.5% of the
cycles on Core0/Core1, enabling FTS to achieve only a speedup of
1.42× for WL17.
Case 2: <compute, compute>. Let us look at WL9 + W13. Bothwork-
loads, when co-running, can fully utilize the SIMD resources on
all the four SIMD architectures, but after WL9 finishes, FTS/Occamy
allows WL13 to use the SIMD lanes released, improving its perfor-
mance by the same speedup, 1.61×, over Private (Figure 10). While
VLS, which lacks this flexibility, yields no performance improve-
ment (1.0×).
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Phases 20.p1 20.p2 17.p1 17.p2 17.p3

SIMDIssueRate

(insts per
cycle)

Private 0.96 1.22 1.95 2 2
VLS 1.26 1.65 1.95 2 2
FTS 0.49 0.59 0.77 0.89 2

Occamy 1.88 1.65 1.91 1.99 1.98
Stall

(cycles)
FTS 6365 4443 6614 4604 5820

Occamy 0 0 0 0 0

(c) SIMD-issue rate and cycles stalled waiting for free registers

Figure 14: Workload WL20 + W17.

Table 5: Attainable performance (GFLOPs/s) for WL8.p1.
𝑉𝐿 4 8 12 16 20/24/28/32

SIMDIssueBound 5.3 10.7 16 21.3 26.7/32/37.3/42.7
MemBound 16 16 16 16 16

CompBound 8 16 24 32 40/48/56/64
Performance 5.3 10.7 16 16 16

Case 3: <memory, memory>. For WL12 + W19, FTS, VTS and Oc-
camy that enable sharing SIMD lanes perform similarly as Private
(Figure 10) as both workloads are memory-bound.
Case 4: FTS Outperforming Occamy. For WL8 + W17, with the
first phase of WL8 (i.e., WL8.p1) exhibiting different operational in-
tensities for its SIMD issue and memory bandwidths (𝑜𝑖𝑖𝑠𝑠𝑢𝑒 = 0.17
and 𝑜𝑖𝑚𝑒𝑚 = 0.25) due to data reuse.

Table 5 gives its attainable performance results obtained by Equa-
tion (4), which are bounded by instruction issue when 𝑉𝐿 < 12
lanes. Occamy has assigned 12 lanes to WL8.p1, which would be
otherwise assigned with 8 lanes by considering only memory band-
width and computation requirements, achieving 1.41×. These 4
extra lanes, which are underutilized, are traded for issue bandwidth
to maintain comparable performance as Private. In contrast, FTS
issues all instructions to the full SIMD data path with the 32 lanes,
avoiding the under-utilization above. As WL17 receives more SIMD
resources, leading to a slightly higher speedup of 1.52×.

7.5 Overhead Analysis

Figure 15 gives the runtime overhead of Occamy, which spends an
average of 0.5% of the execution time of a workload to facilitate its
EM-SIMD execution. This overhead consists of monitoring lane par-
titioning decisions and adjusting the vector lengths. The former is
negligible (0.3% on average), since instructions reading <decision>
are speculatively sent to Occamy (Section 4.1). The latter is 0.2%
on average, spent on draining the SIMD pipelines for vector-length
re-configuration. This is also negligible since lane partitioning does
not happen frequently in vectorized inner loops (Section 6.3).

7.6 Scalability

Figure 16 compares Occamy further with the three existing SIMD
architectures (Figure 1(a)-(c)) by using four groups of SPEC work-
loads (with Private as the baseline). For each of the first three
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Figure 15: Overhead for supporting elastic spatial-sharing.
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Figure 16: Speedups on 4 cores (with Private as the baseline).

groups, we combine two pairs of <memory, compute> workloads
used in Figure 10 by running the two memory-intensive workloads
on Core0 and Core1 and the two compute-intensive workloads on
Core2 and Core3. We form the last group by running three memory-
intensive workloads on Core0 − Core2 and one compute-intensive
workload on Core3 with these workloads not paired in Figure 10.

Compared to the two-core case (Figure 10), three observations
are in order. (1) Occamy fares similarly as Private, FTS and VLS on
Core0 and Core1 but delivers better speedups on Core2 and Core3.
(2) Occamy exhibits good scalability when moving from 2 to 4 cores.
In particular, the solo compute-intensive group, WL14, in the last
group runs faster than in the 2-core case as expected. (3) For FTS,
achieving temporal sharing has shifted the bottleneck from SIMD
lanes to other hardware resources, which may be expanded at the
expense of chip area [38], but this is often impractical. Nevertheless,
by maintaining the same number of vector and predicate physical
registers per core as in the two-core case (and thus incurring a
33.5% more chip area than the other three architectures), FTS still
under-performs Occamy.

8 RELATEDWORK

Some earlier works have designed vector accelerators that support
mixed SIMD and non-SIMD execution models. For example, SIMD
has been mixed with MIMD, by decomposing SIMD units into fine-
grained computation tiles and allocating them to different tasks [2]
or enabling different threads to operate independently in MIMD or
lockstep SIMD mode [22, 24, 25]. Our EM-SIMD execution model
is similar, but these earlier works achieve vector-length flexibility
with hardware innovations while Occamy leverages compiler sup-
port to adjust the vector lengths needed. For example, in [2], an
instruction forwarding network instead of the fetching logic and
I-cache was introduced, enabling instructions to be passed directly
among the neighboring cores. Occamy passes the phase behaviors
of co-running workloads to the hardware to improve SIMD lane
partitioning. Thus, both may be combined in future work. Alterna-
tively, SIMD can be mixed with ILP by reconfiguring SIMD units
into VLIW processors [33] or enabling SIMD lanes to be morphed
into a feed-forward subgraph accelerator [11]. Furthermore, DLP
can also be extracted together with TLP by assembling vector in-
structions at runtime [15, 16], allowing idle vector lanes to run

short-vector or scalar threads [35], and splitting a SIMD group into
smaller SIMD sub-groups [30]. In particular, Gobieski et al. [13]
exploit the dataflows in a sequence of vector instructions and Dyser
et al. [14] achieve SIMD flexibility by using a configurable data
path. However, these works focused on individual workloads while
Occamy focuses on co-running workloads.

Some recent vector accelerators are designed to interface with
multiple scalar cores. Apple’s AMX [17–19] and the NEC vector
engine [20, 43] embrace temporal sharing in order to hide memory
access latency. Beldianu and Ziavras [3, 4, 29] have introduced
coarse- and fine-grained temporal sharing policies including a static
spatial-sharing policy and found fine-grained temporal sharing to
be the most effective. In contrast, Occamy adopts an elastic spatial-
sharing policy, capable of balancing performance and area costs.

Vector-length-agnostic programming is now supported by emerg-
ing vector ISAs, e.g., the RISC-V vector extension [1], ARM SVE/
SVE2 [27, 37], and unlimited vector extension [12]. In addition,
some compilers may also generate vectorized code with varying
vector lengths [34, 47] for a fixed-width SIMD data path. Unlike
these works, Occamy can adjust the vector lengths at runtime by
using a hardware-software co-design.

In this paper, Occamy is introduced as a SIMD processor for im-
proving SIMD utilization for co-running workloads with memory-
and compute-intensive workloads on a multi-core CPU proces-
sor. Thus, our work differs from those on exploiting DLP on GPUs
[9, 32]. GPUs offer high throughput by executing threads in a SPMD
fashion, with each vector lane shared temporally by several thread
warps. Its underlying architecture employs a large register file to
achieve this, since otherwise the their vectors lanes will be severely
underutilized. For CPUs, however, this solution is impractical due
to a huge area cost incurred. Thus, GPUs benefit workloads con-
sisting of batch computations with a massive amount of SPMD
parallelism at the thread level. For CPUs, their SIMD co-processors
provide low latency by issuing vector instructions directly from
their scalar pipelines, benefiting workloads with SIMD parallelism
possibly scattered in their different phases at the instruction level.
Currently, existing SIMD architectures for CPUs cannot exploit
DLP adequately for co-running workloads with both memory- and
compute-intensive workloads via temporal sharing [17–19] or static
spatial-sharing [3, 4, 29] as evaluated in this paper. In contrast, Oc-
camy is capable of adjusting the SIMD resources dynamically for
such workloads, adapting well to their phase behaviors.

Finally, the compiler community has developed a number of
SIMD vectorizers [7, 8, 23, 39, 48], which can be leveraged to further
improve the effectiveness of the Occamy compiler.

9 CONCLUSION

This paper proposes Occamy, a SIMD co-processor that can be
shared by multiple CPU cores, with an elastic spatial sharing policy
for its SIMD lanes. The SIMD lanes are dynamically partitioned
across the co-running workloads based on their phase behaviors,
so that each workload may execute in variable-length SIMD mode.
This has been achieved by a hardware-software co-design. Our
evaluation shows that Occamy can significantly improve SIMD
utilization, and consequently, achieve performance speedups over
the existing SIMD architectures, with only negligible chip area cost.
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