
Cache Design Effect on Microarchitecture Security:
A Contrast between Xuantie-910 and BOOM

Zhe Zhou∗, Xiaoyu Cheng∗, Yang Sun∗, Fang Jiang∗, Fei Tong∗†‡, Yuxing Mao§¶ and Ruilin Wang‖
∗Southeast University, Nanjing, Jiangsu, China

‡Purple Mountain Laboratories, Nanjing, Jiangsu, China
§School of Electrical Engineering, Chongqing University, Chongqin, China

¶State Key Laboratory of Power Transmission Equipment & System Security and New Technology,
Chongqing University, Chongqing, China

‖School of Computing, Newcastle University, United Kingdom
‡Corresponding Author: ftong@seu.edu.cn

Abstract—Modern processors make use of optimization tech-
niques such as cache and speculation mechanisms to greatly
improve performance. But recent research has found that these
techniques can also be exploited by attackers to perform powerful
side-channel attacks. A large number of powerful cache-based
attacks have been replicated and enhanced over Intel X86- and
ARM-based architectures, but there is a relative lack of research
on RISC-V-based architectures. Xuantie-910 and BOOM are
both RISC-V-based processors. So far, cache-side channels in
the unprivileged case of Xuantie-910 have not been proven,
while cache attacks against BOOM are proliferating. There
are two types of caches, including physically-indexed physically-
tagged (PIPT) cache (adopted by Xuantie-910) and virtually-
indexed physically-tagged (VIPT) cache (adopted by BOOM),
corresponding to two different cache addressing forms. VIPT has
higher addressing performance than PIPT, since it can directly
obtain cache line index from virtual address. In this paper,
we study Xuantie-910 and BOOM to explore the impact of
cache design on the security of RISC-V-based microarchitecture.
Specifically, we compare the impact of their cache addressing
forms on precise flushing of cache lines at specified locations,
which plays an important role in cache side-channel attacks.
Experimental results show that for the VIPT cache in BOOM,
the location-specified cache lines can be accurately flushed, and
Spectre attack can be successfully carried out by using the cache
side-channel. On the other hand, for the PIPT cache in Xuantie-
910, it is impossible for attackers to directly and accurately flush
the specified location of cache without affecting performance,
which hinders the success of cache side-channel attacks. This
provides us with an insight that one can adopt a VIPT-based
cache with a mechanism similar to PIPT for preventing the
accurate access of cache line index, which can not only keep
the advantage of high-performance addressing in VIPT but also
improve chip security.

Index Terms—Microarchitecture security, Xuantie-910,
BOOM, RISC-V, Cache-based side-channel attack

I. INTRODUCTION

RISC-V is a simple and open-source instruction set archi-

tecture (ISA), supporting customized extension. After years of

This work is supported in part by the National Natural Science Foundation
of China (No. 61971131), in part by “Zhishan” Scholars Programs of
Southeast University, and in part by the scholarship of State Key Laboratory
of Power Transmission Equipment & System Security and New Technology
(2007DA105127).

technological evolution, RISC-V has become a commercially

available ISA. The volume of RISC-V related research has

exponentially increased in the past decade. The tremendous

momentum of RISC-V adoption in computing platforms is

very clear. Various RISC-V devices from small IoT microcon-

trollers to multi-core high-performance processors have been

taped out [1]. As two typical examples, T-head has taped out

Xuantie-910 for cloud and edge computing [2], and Berkeley

has taped out the third generation of the Berkeley Out-of-Order

Machine (BOOMv3), which is an open-source implementation

of the RISC-V superscalar out-of-order core [3] .

Recent disclosure of microarchitectural attacks such as

Spectre [4] and Meltdown [5] on speculating cores injects an

imperative concern into the microarchitectural design space.

Architecture designers must now consider security, in addition

to power, performance and area, when evaluating new designs.

Those instructions which are incorrectly executed by the out-

of-order execution and speculative mechanisms in modern

processors and whose results are not displayed at the archi-

tecture level due to rollback are called transient instructions

[4], [5]. Although the execution of transient instructions does

not affect the architectural state and thus cannot be observed

at the architecture level, the microarchitectural state may

change. Transient execution attack is intended to leak sensitive

information by converting the change of microarchitecture

state to architecture state, which belongs to the side-channel

attack.

Cache-based side-channel attacks exploit the difference in

access times of cache hits and misses [6]. In recent years, many

side-channel attacks have been proposed such as flush+reload

[7] and evict+reload [8]. Le et al. [9] implemented a cache-

based side channel attack on BOOM, using the indexing of

virtual addresses to precisely flush cache. In addition, as cache

is one of the most important performance components in

modern processor, disabling cache which would cause unac-

ceptable performance degradation is not a practical solution to

these attacks. Thus the design of cache is very important for

microarchitectural security.

In this paper, we first analyze and compare the different

1199

2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

2324-9013/22/$31.00 ©2022 IEEE
DOI 10.1109/TrustCom56396.2022.00166

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 T

ru
st

, S
ec

ur
ity

 a
nd

 P
riv

ac
y

in
 C

om
pu

tin
g

an
d

C
om

m
un

ic
at

io
ns

 (T
ru

st
C

om
) |

 9
78

-1
-6

65
4-

94
25

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
Tr

us
tC

om
56

39
6.

20
22

.0
01

66

Authorized licensed use limited to: Southeast University. Downloaded on April 11,2023 at 15:15:09 UTC from IEEE Xplore. Restrictions apply.

cache designs in Xuantie-910 and BOOMv3, and the impact

of these differences on the implementation of Spectre attack

which needs to build cache-based side channels by accurately

flushing cache. We conclude that the cache design of BOOMv3

allows flushing of the precise location of cache, which is an

important step in a successful cache-based side-channel attack.

In contrast, Xuantie-910 does not achieve the precise position

flushing of cache. Then we implement a cache-based side-

channel attack on BOOMv3 and Xuantie-910 through software

simulation and/or FPGA prototype verification to prove our

analysis, and provide significant cache design insights for

improving the security of RISC-V-based microarchitecture.

The rest of this paper is organized as follows. Section II

discusses the related work. The preliminaries of Spectre at-

tack are presented in Section III. In Section IV, the cache

implementation details of BOOMv3 and Xuantie-910 along

with their impact on security are introduced. The experimen-

tal procedure is reported in Section V. Finally, Section VI

provides conclusions and suggestions for future work.

II. RELATED WORK

In this section, we briefly introduce existing research on

cache side-channel attacks.

A. Time-driven Cache Side-channel Attacks

Time-driven cache-based side-channel attacks exploit the

inherent property of the difference in response time between

cache hits and cache miss. Kesley [10] first proposed secret

key analysis based on cache hit rates, revolutionizing tra-

ditional analysis methods. After then, a variety of effective

cache-based side-channel attacks have been proposed. What is

even more threatening is that these attacks can be implemented

on real platforms and successfully obtain private data such as

AES keys [11] and OpesnSSL random values [12]. The attack

environment is gradually shifting from single-core to cross-

core case and from microprocessor to cloud environment. This

poses a serious threat to microarchitecture security. Research

on cache-based side-channel attacks on x86, ADM and ARM

architectures is relatively mature. However, there are still many

challenges in reproducing cache-based side-channel attacks

on RISC-V architectures, and there is also a lack of related

research work.

B. Countermeasures for Cache-based Side-channel Attacks

Traditional caches use a fixed mapping policy that allows

an attacker to easily locate the cache lines involved in a

victim’s program to run and perform operations such as

probing or eviction. Several new caching architectures have

been proposed to address this weakness. HybCache in [13],

[14] used a random substitution strategy to prevent attackers

from accurately evicting. F. Liu and R. B. Lee in [15] randomly

loaded data as a way to avoid attackers launching reuse-based

attacks against specific addresses. The sharing of hardware

resources such as cache and branch predictors is the root cause

of cache side channels. Isolation-based, encryption-based and

other schemes have been proposed.

Fig. 1. Cache operation mechanism.

III. BACKGROUND

In this section, we introduce RISC-V ISA, the structure and

organizational form of cache and cache-based side-channel

attacks including their principles and types. We also introduce

Spectre attacks.

A. RISC-V ISA

RISC-V is a free and open-source ISA based on the

principles of the Reduced Instruction Set Computing (RISC).

Because the RISC-V instruction set is designed to be imple-

mented considering both the high performance and low power

consumption, it is not only concise but its different modules

can be organized together in a modular way.

RISC-V consists of a required basic integer instruction set

and various optional extensions. Extensions are denoted with

a single letter, e.g. M (integer multiplication and division),

A (atomic instructions), C (compressed instructions), etc. A

comprehensive description of the RISC-V instruction set is

available in [16].

B. Cache

The processing speed of CPU is too fast and the relatively

slow access speed of the main memory forms a contradiction.

Based on time and spatial correlation, the cache solution is

brought up. The whole cache space is divided into cache lines.

Each cache line is divided into Address and Data. Address

is composed of Tag, Index and Offset. The Data part stores

a piece of data with continuous addresses, while the Tag

part stores the public addresses of these data [17]. Index is

promoted to locate cache line. Offset is used to locate single

byte in cache line. Those cache lines which share the same

index are called set.

As shown in Fig. 1, when a cache client attempts to access

data, it first checks cache. If the requested data is found there,

it is called a cache hit. The percentage of attempts that result

in a cache hit is called cache hit ratio. The requested data

not found in cache (called a cache miss) is fetched from the

1200

Authorized licensed use limited to: Southeast University. Downloaded on April 11,2023 at 15:15:09 UTC from IEEE Xplore. Restrictions apply.

main memory and copied into the cache. How this is done and

which data is popped from the cache to make room for new

data depends on the caching algorithm, caching protocol, and

system policy adopted.

C. Cache-based Side-channel Attacks

For the purpose of improving processor performance by

predicting future program behavior, microarchitectural compo-

nents maintain the state that depends on past program behavior

and assume that future behavior is similar or related to past

behavior. When multiple programs are executed on the same

hardware, either concurrently or via time sharing, the changes

of microarchitectural state caused by the behavior of one

program may affect other programs. This, in turn, may result

in unintended information leaks from one program to another

[18]. Side-channel attacks using this principle were first pro-

posed by Kocher et al. Over the years, side channels have been

demonstrated over multiple microarchitectural components.

However, in general, attackers are not able to observe each

of the victim’s cache accesses. Therefore, indirect observations

are used. In some of these attacks, attackers measure the access

time of each of their own individual memory accesses, after

some interference with the victim. In other attacks, attackers

observe the total execution time of the victim’s security-critical

operation, instead of the access time of each memory access

[6]. The types of commonly-used cache-based side-channel

attack include Evict-and-reload Attack1 [8], Prime-and-probe

Attack [19] and Flush-and-reload Attack [7].

D. Spectre Attacks

Spectre attacks violate memory isolation boundaries by

combining speculative execution with data exfiltration through

microarchitecture covert channels. Since security check takes

a long time, processor will execute subsequent instructions in

advance based on the prediction of the corresponding specu-

lative mechanism until the security check result is available.

This time period is the transient execution window. Transient

instructions executed within this time window may calculate

the unauthorized results on the prediction branch and then

leak them through the microarchitecture convert channels. In

such an attack, the attacker starts by locating or introducing

a sequence of instructions within the process address space

which, when executed, acts as a covert channel transmitter that

leaks the victim’s memory or register contents. The attacker

then tricks CPU into speculatively and erroneously execut-

ing this instruction sequence, thereby leaking the victim’s

information over the covert channel. The above description

of the Spectre attack is general and needs to be specifically

instantiated with a method to induce erroneous speculative

execution and a microarchitectural covert channel such as the

cache-side channel described above.

1In the names of the listed representative attacks, the words before and
after “-and-” represent that the attacker performs two actions, e.g., “evict”
and “time”, with the “-and-” indicating the attacker waits in-between these
actions for the victim to perform the security-critical operation.

IV. CACHE-RELATED SECURITY ANALYSIS

A. Introduction of BOOMv3 and Xuantie-910

BOOMv3 is a synthesizable and parameterizable open-

source RV64GC RISC-V core written in the Chisel hardware

construction language. Xuantie-910 is a RISC-V compatible

64-bit high-performance processor developed by T-head Semi-

conductor Co., Ltd. It delivers industry-leading performance

in control flow, computing and frequency through architecture

and micro-architecture innovations.

B. Cache Implementation Details of BOOMv3

• BOOMv3 data cache overview: The size of L1 cache
in BOOMv3 of a small configuration is 16K bytes, using

a 4-way set-associative structure. The size of the cache

line is 64 bytes, with a total of 64 sets. The L1 data

cache uses virtual address index and physical address tag

(VIPT). The cache line can be divided into four groups,

each containing 128-bit data array. The data array adopts

the structure of multiple banks, and there are a total of 8

banks. Each bank has a bit width of 32 bits. Each time

up to four banks of data can be read, i.e., the maximum

bit width of each read access is 128 bits.

• Read strategy: When cache performs a read operation,
the cache arbiter will read all 4-way data in the set

corresponding to the index part of the address, and

compare the tag part of the address with the tag of each

way in the set to determine whether there is a hit.

• Write strategy: When cache performs a write operation,
the cache arbiter adopts a random replacement strategy to

backfill the data to a certain way in the set corresponding

to the index part of the address.

C. Cache Implementation Details of Xuantie-910

• Xuantie-910 data cache overview: The size of the L1
data cache of Xuantie-910 is 64K bytes, using a 2-way

set-associative structure. The size of the cache line is 64

bytes, with a total of 512 sets. The L1 data cache uses

physical address index and physical address tag (PIPT)

with a first-in-first-out replacement strategy. The cache

line can be divided into four groups, each containing 128-

bit data. Addr[5:4] represents the fourth and fifth bits of

the address to access the memory. Each array stores 128-

bit data, so Addr[5:4] corresponds to the lower two bits

of the index, and for a certain address, the location where

the data mapped to the cache is stored can be determined.

• Read strategy: When cache performs a read operation,
the index of accessing the low array is the access address

itself, while the index of accessing the high array will

invert the fourth bit of the access address, so as to read

the data of the two ways, and then select the data of the

channel according to the verification result of the tag.

• Write strategy: When cache performs a write operation,
High Array and Low Array use the same index, and half

of the data of the cache line can be written to the cache

at a time. The lowest bit of the index is the way to be

backfilled. If the way to be backfilled is way1, one needs

1201

Authorized licensed use limited to: Southeast University. Downloaded on April 11,2023 at 15:15:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Process of accurate flushing function.

to adjust the order of the data, and swap the end to end

in 128-bit units. The penultimate bit of the index is cnt.

Since a maximum of 256 bits can be written at a time, a

cache line can be written only twice. The cnt bit is used

to calculate whether to write the first half or the second

half of the cache line.

D. The Impact of Cache Design Differences between BOOMv3
and Xuantie-910 on Security

• Accurately flush method for BOOMv3 cache line:
BOOMv3’s L1 Dcache has a total of 64 sets, and the

cache line size is 64 bytes. It requires 6 bits in the

address to match the set index of the cache arbiter, and

the offset requires 6 bits. These 12 bits exactly correspond

to virtual/physical address. Therefore, after the index part

of the virtual address is converted by MMU, the index

part of the exact same physical address is obtained. So

if one wants to accurately flush all cache lines in a set,

it only needs to obtain the index of the set, and then

access the garbage with the same index multiple times.

The address where the data is located is sufficient. The

multiple accesses here are required because the dcache of

BOOMv3 adopts a random replacement strategy. The way

to be written each time is to fill in one of the four ways at

random. Repeated flushing can increase the eviction rate.

For a certain location in continuous memory the one-time

eviction process is shown in Fig. 2.

• The same flush method on Xuantie-910: Since the
L1 Dcache of Xuantie-910 has a total of 512 sets, the

cache line size is 64 bytes, the number of bits in the

address used to match the set index of the cache arbiter

requires 9 bits, the offset requires 6 bits, and a total of

15 bits are required. However, according to the RISC-

V standard only the first 12 bits of the lower virtual

address can be used as the offset of the page table where

the virtual address is translated into the physical address,

which corresponds to 4,096 bytes of the page table page.

The physical memory address is 56 bits, of which 44

bits are the physical page number. The remaining 12 bits

are completely inherited from the virtual address, so the

Fig. 3. Spectre V1 victim function.

[14:12] bits of the virtual address are different from the

[14:12] bits of the physical address. When we flush the

data cache mapped to the memory where the specified

data is located, we cannot locate the corresponding set

index is retained and the tag is modified to flush the same

cache line.

V. EXPERIMENTAL PROCEDURE

A. Cache-based Side-channel Attack Flow

Flush-and-reload is adopted in the current attack method to

construct cache based side channel of the leaked secret byte.

Let C denote the content stored in a target memory address A,
and C has been loaded into cache. The basic principle of the

flush-and-reload technique can be explained by the following

3 phases:

• Phase 1: The attacker flushes C from cache.

• Phase 2: The attacker waits for the victim’s code to
access A. This access will load C back into cache.

• Phase 3: The attacker re-accesses A and measures the

time of this access. If the access time is within a certain

threshold, it means that the victim has accessed A, which
can lead to the leak of the secret byte.

In the above flush-and-reload operation steps, it is relatively

simple to load memory data into cache, while difficult to flush

cache, because the current RISC-V ISA does not support the

direct flush operation of cache line, in contrast to X86-based

ISA which has clflush interface to achieve flush operation

[20]. The cache related operations in RISC-V have been

defined in the newly proposed Cache Management Operation

(CMO) extension, which, however, may take a long time to

improve and implement. Therefore, we cannot directly flush

the specified cache address at present, but it is quite necessary

to flush cache accurately to realize various attacks such as

Spectre using the cache based side channel.

Taking the representative Spectre V1 that exploits the cache-

side channel to leak secret data as an example, the victim

function code of the attack is shown in Fig. 3. To implement

the Spectre V1 attack, the attacker needs to create three

conditions.

• Firstly, the value of the idx shown in Fig. 3 is maliciously
chosen (out-of-bounds), so that array1[idx] resolves to a
secret byte k somewhere in the victim’s memory, i.e., idx
= (address of a secret byte to read) − (base address of
array1).

• Secondly, array1 sz and array2 are uncached, but k
is cached, thus making the branch condition wait for

uncached parameters. It may take more time to determine

the branch result. When the branch prediction is true, the

processor will go to access array2[k× 4096], and at this

1202

Authorized licensed use limited to: Southeast University. Downloaded on April 11,2023 at 15:15:09 UTC from IEEE Xplore. Restrictions apply.

time, k is in the in the cache so it can return immediately,
which provides sufficient transient execution window for

the processor to execute the instructions in the conditional

branch statement to leak the secret byte k into the cache.
• Finally, the idx received by the previously executed con-
ditional branch statements were valid, leading the branch

predictor to assume the “if” statement will likely be true.

In order to achieve the above attack conditions and build

the side channel, the flush function that could accurately

flushes the cache, i.e., flushes the specified cache address, is

to be implemented. We need a workaround to achieve the

same effect as the clflush operation. For example, we can

overwrite the original content that we want to flush by loading

new dummy content to the specified location in the cache,

essentially a tag changes in the cache, thus we disguise the

flush equivalent operation to the specified address in the cache.

As for an extreme example, if the entire cache has 64K bytes,

and when 64K bytes of random memory data (dummy data)

is loaded into an array, this data will be loaded into the data

cache at the same time. Then all the original data in cache

will be flushed away. The approach we take is a similar one,

but we only flush out the cache units we care about, not the

entire cache.

B. Simulation Environment Setup

In the experiment against a BOOMv3 side-channel attack,

we used the Chipyard [21] working environment developed

by UC Berkeley to complete the Spectre V1 attack simulation

experiment of BOOMv3 and successfully reproduced it in

FPGA. Next, we built a QEMU-based Xuantie-910 verification

environment to verify whether the precision flush function is

available on Xuantie-910.

C. Cache-based Side-channel Attack on BOOMv3

The implementation idea of the flush function in our spectre

attack code is as follows:

We first pass the starting address of the data in main memory

that needs to be flushed in its corresponding cache and the

data length sz (in bytes) to be flushed as entry parameters
into the function. Then we use the virtual address to calculate

the number of cache sets that need to be flushed to flush sz-
sized data, and the specified memory address of each set that

needs to be flushed corresponds to the index part of the cache

arbiter. Finally, according to the calculation result, the cache

set at the specified location is filled with dummy data to flush

out the content. It should be noted that because the BOOMv3

cache adopts a random replacement strategy by default, it

requires more flushes. The specific idea is the same as Fig. 2

in Section IV.

In order to prove that our flushing function is effective, we

measured the cycles of loading data from cache and RAM

(Random Access Memory) before using the flushing function,

and the cycles of loading data from cache and RAM after

using the flushing function in the experimental platform to

see if they are what we expect.

Fig. 4. The result of accurate cache flushing function on BOOMv3.

Fig. 5. The result of accurate cache flushing function on BOOMv3.

It can be seen from Fig. 4 that after the data is loaded

into the cache and then flushed, the number of cycles of

loading the data is the same as the cycles of the initial

loading from the RAM, which proves that the flushing function

is effective. After that, we apply this function to build a

cache side channel in the Spectre V1, V2, V4, and V5 attack

codes, and successfully read the secret data on BOOMv3. The

experimental results are shown in Fig. 5, which further prove

the effectiveness of the flushing function.

D. Cache-based Side-channel Attack on Xuantie-910

In order to prove the impact of the different designs of

Xuantie-910 cache and BOOMv3 cache on side-channel at-

tacks, we implement the cache flushing function in Xuantie-

910 in the same way as in BOOMv3. We conduct experiments

in the Xuantie-910 simulation platform, and measure the

number of cycles of loading data from cache and RAM

before and after flushing using this function to see if it meets

expectations. As a comparison, we have written a function

to flush the entire cache of Xuantie, that is, when loading a

random memory data (dummy data) of size 64K bytes into an

array, these data will be loaded into Xuantie-910 data cache at

the same time, and thus all the original data in the cache will

be flushed. The results of the two cache flushing functions are

shown in Fig. 6 and Fig. 7, respectively.

1203

Authorized licensed use limited to: Southeast University. Downloaded on April 11,2023 at 15:15:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. The result of accurate cache flushing function on Xuantie-910.

Fig. 7. The result of entire cache flushing function on Xuantie-910.

Comparing the above results and the experimental results of

BOOMv3, it can be seen that the flush function that accurately

flushes the cache does not successfully flush the data on the

Xuantie-910, which further verifies our conjecture about the

impact of the design of the Xuantie-910 cache on the security

of the micro-architecture.

VI. CONCLUSION AND FUTURE WORK

This paper explored the impact of cache design on microar-

chitectural security, using two representative RISC-V-based

high-performance processor cores, i.e., BOOMv3 and Xuantie-

910, as representatives. Given the lack of cache flushing

instructions in the RISC-V-based architecture, we created

attack conditions and constructed side channels by loading

extraneous data into specific cache lines. Then we com-

pared the cache flushing experiments over Xuantie-910 and

BOOMv3. The results show that the accurate flushing of spec-

ified cache, which can be achieved on BOOMv3 with VIPT

memory-mapped cache mechanism, cannot be accomplished

on Xuantie-910 with PIPT memory-mapped cache mechanism,

which efficiently decreases the possibility of flush-and-reload

attack on Xuantie-910. Although the original intention of

Xuantie-910 adopting PIPT is not for avoiding cache-based

side-channel attack, such a design objectively prevents the

precise addressing of specified cache lines. On the other hand,

it is well-known that the addressing efficiency of PIPT is lower

that that of VIPT. This provides us with insight that we can

adopt a VIPT-based cache with a mechanism designed from

hardware level for preventing the accurate access of cache

line index, which can not only keep the high-performance

addressing of VIPT but also improve chip security.

ACKNOWLEDGMENT

The authors would like to thank Dr. Hongyu Wang for his

constructive suggestions, and great help and support.

REFERENCES

[1] T. Lu, “A survey on risc-v security: Hardware and architecture,” arXiv
preprint arXiv:2107.04175, 2021.

[2] C. Chen, X. Xiang, C. Liu, Y. Shang, R. Guo, D. Liu, Y. Lu, Z. Hao,
J. Luo, Z. Chen et al., “Xuantie-910: Innovating cloud and edge
computing by risc-v,” in 2020 IEEE Hot Chips 32 Symposium (HCS).
IEEE Computer Society, 2020, pp. 1–19.

[3] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom: The
3rd generation berkeley out-of-order machine,” in Fourth Workshop on
Computer Architecture Research with RISC-V, vol. 5, 2020.

[4] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 1–19.

[5] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
preprint arXiv:1801.01207, 2018.

[6] Z. He and R. B. Lee, “How secure is your cache against side-channel
attacks?” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, 2017, pp. 341–353.

[7] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” 2014, pp. 719–732.

[8] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive {Last-Level} caches,” in 24th USENIX
Security Symposium (USENIX Security 15), 2015, pp. 897–912.

[9] A.-T. Le, B.-A. Dao, K. Suzaki, and C.-K. Pham, “Experiment on
replication of side channel attack via cache of risc-v berkeley out-of-
order machine (boom) implemented on fpga,” in Fourth Workshop on
Computer Architecture Research with RISC-V (CARRV 2020), 2020.

[10] O. Acıicmez, W. Schindler, and C. K. Koc, “Cache based remote timing
attack on the aes,” in Topics in Cryptology – CT-RSA. Springer, Berlin,
Heidelberg, 2006, pp. 271–286.

[11] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on aes,
and countermeasures,” vol. 23, pp. 37–71, 2010.

[12] Y. Yarom and N. Benger, “Recovering openssl ecdsa nonces using the
flush+reload cache side-channel attack,” 2014.

[13] G. Dessouky, T. Frassetto, and A.-R. Sadeghi, “Hybcache: Hybrid side-
channel-resilient caches for trusted execution environments.” USENIX
Association, 2020, pp. 451–468.

[14] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “Aslr on the
line: Practical cache attacks on the mmu,” in Proceedings 2017 Network
and Distributed System Security Symposium. Internet Society, 2017.

[15] F. Liu and R. B. Lee, “Random fill cache architecture,” in 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture,
2014, pp. 203–215.

[16] A. Waterman, Y. Lee, D. Patterson, K. Asanovic, V. I. U. level Isa,
A. Waterman, Y. Lee, and D. Patterson, “The risc-v instruction set
manual,” Volume I: User-Level ISA’, version, vol. 2, 2014.

[17] A. Rousskov and D. Wessels, “Cache digests,” Computer Networks and
ISDN Systems, vol. 30, no. 22-23, pp. 2155–2168, 1998.

[18] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
Journal of Cryptographic Engineering, vol. 8, no. 1, pp. 1–27, 2018.

[19] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of aes,” in Cryptographers’ track at the RSA conference.
Springer, 2006, pp. 1–20.

[20] P. Guide, “Intel® 64 and ia-32 architectures software developer’s man-
ual,” Volume 3B: System programming Guide, Part, vol. 2, no. 11, 2011.

[21] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton et al., “Chipyard: Integrated
design, simulation, and implementation framework for custom socs,”
IEEE Micro, vol. 40, no. 4, pp. 10–21, 2020.

1204

Authorized licensed use limited to: Southeast University. Downloaded on April 11,2023 at 15:15:09 UTC from IEEE Xplore. Restrictions apply.

